Disclination mediated dynamic recrystallization in metals at low temperature

نویسندگان

  • Mohammad Aramfard
  • Chuang Deng
چکیده

Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation. In contrast to previously proposed dislocation-based models, this mechanism relies on the generation of disclination quadrupoles, which are special defects that form during deformation when the grain boundary migration is restricted by structural defects such as triple junctions, cracks or obstacles. This mechanism offers an alternative explanation for the grain refinement in metals during severe plastic deformation at cryogenic temperature and may suggest a new method to tailor the microstructure in general crystalline materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction Between Precipitation and Dynamic Recrystallization in HSLA-100 Microalloyed Steel

Strain induced precipitation in HSLA-100 steel was investigated by conducting hotcompression and relaxation tests at temperature range of 850°C to 1100°C and strain rate of 0.001s-1 to 1s-1. The absence of dynamic recrystallization at temperatures below 1000°C was attributedto the influence of dynamic precipitation. The stress relaxation tests showed that strain inducedprecipitation is possible...

متن کامل

Characteristic Points of Stress-Strain Curve at High Temperature

Determination of critical points on hot stress-strain curve of metals is crucial in thermo-mechanical processes design. In this investigation a mathematical modeling is given to illustrate the behavior of metal during hot deformation processes such as hot rolling. The critical strain for the onset of dynamic recrystallization has been obtained as a function of strain at the maximum stress. In a...

متن کامل

Optimization of Hot Workability in Ti-IF Steel by Using the Processing Map

Processing map for hot working of Ti-IF steel has been developed in the temperature range of 750 to 1100 °C and strain rate of 0.01 to 100 s-1. This map in the austenite region exhibits a single domain with a peak efficiency of 45% occurring at 1025 °C and strain rate of 0.02 s-1. The domain extends over the temperature range of 1000 to 1100 °C and strain rate range of 0.01 to 1 s-1. The true s...

متن کامل

Determining the Hot Deformation Temperature Range of Medium Carbon Ni-Cr-Mo Low Alloy Steels using Hot Tensile and Hot Torsion Tests

The aim of this study was to investigate the suitable temperature range for hot deformation of three medium carbon Ni-Cr-Mo low alloy steels by hot tensile and hot torsion tests. Hot tensile tests were carried out in the te,prature range of 850-1150°C at a constant strain rate of 0.1 s-1 until fracture. Then, the tensile flow behavior, hot ductility and microstructural evolution of the steels w...

متن کامل

Evolution of recorded microstructures in minerals during cooling of Zarrin intrusion, evidence for dynamic deformation

The Zarrin granitoids is located in the west of Yazd block, Central Iran. Zarrin granitoids exhibit mylonitic rocks ranging from protomylonitic to mylontic. In Zarrin granitoids examples of sub-magmatic, microstructures are represented by chessboard patterns in quartz and sub-magmatic fractures in plagioclase, indicating deformation at high-temperature conditions (T > 650º C) and the presence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015